Fujitsu desarrolla una tecnología de reconocimiento facial basada en inteligencia artificial para detectar con precisión sutiles cambios en la expresión.

Reconocimiento facial detecta cambios en la expresión

Reconocimiento facial que detecta cambios en la expresión

Fujitsu Laboratories, Ltd. y Fujitsu Laboratories of America, Inc. han anunciado el desarrollo de una tecnología de reconocimiento de expresión facial con IA que detecta cambios sutiles en la expresión facial con un alto grado de precisión. La nueva tecnología ha sido desarrollada en colaboración con la Facultad de Ciencias Computaciones de la Universidad Carnegie Mellon (USA).

Uno de los obstáculos para la tecnología de reconocimiento de expresión facial es la dificultad de proporcionar grandes cantidades de datos necesarios para entrenar modelos de detección para cada pose facial, porque las caras generalmente se capturan con una amplia variedad de poses en aplicaciones del mundo real. Para abordar el problema, Fujitsu ha desarrollado una tecnología para adaptar diferentes procesos de normalización para cada imagen facial. Por ejemplo, cuando el ángulo de la cara del sujeto es oblicuo, la tecnología puede ajustar la imagen para que se parezca más a la imagen frontal de la cara, permitiendo que el modelo de detección sea entrenado con una cantidad relativamente pequeña de datos. La tecnología puede detectar con precisión cambios emocionales sutiles, incluidas risas incómodas o nerviosas, confusión, etc., y también cuando la cara del sujeto se mueve en un contexto del mundo real.

Reconocimiento facial detecta cambios en la expresión

Fujitsu anticipa que la nueva tecnología se utilizará en una variedad de aplicaciones del mundo real, incluida la facilitación de la comunicación para mejorar el compromiso de los empleados y también para optimizar la seguridad para conductores y trabajadores de una fábrica.

Fujitsu presenta una solución de IA para detectar la primera causa de ceguera

Antecedentes

En los últimos años, las tecnologías que detectan cambios en la expresión facial a partir de imágenes y que leen las emociones humanas han estado atrayendo cada vez más interés. Las tecnologías existentes se han desarrollado principalmente para descubrir modificaciones claras en la expresión facial (por ejemplo, las comisuras de la boca y de los ojos, que se mueven ampliamente). Estas tecnologías se han utilizado en algunas aplicaciones prácticas, incluida la extracción automática de escenas destacadas en videos y la mejora de las reacciones de los robots. En el futuro, las tecnologías de reconocimiento de expresión facial se utilizarán más ampliamente en una variedad de situaciones, incluida la monitorización del paciente en la atención médica y el análisis de las respuestas de los clientes a los productos en las campañas de marketing.

Reconocimiento facial detecta cambios en la expresión

Cuestiones

Para "leer" las emociones humanas de manera más efectiva, es fundamental capturar los sutiles cambios faciales asociados con las emociones, como la comprensión, el desconcierto y el estrés. Para lograr esto, los desarrolladores han confiado cada vez más de las Unidades de Acción (AUs, siglas en inglés), que expresan las "unidades" de movimiento correspondientes a cada músculo de la cara en base a un sistema de clasificación anatómico. Por ejemplo, las AUs han sido utilizadas por profesionales en campos tan variados como la investigación psicológica y la animación. Las AUs se clasifican en aproximadamente 30 tipos según los movimientos de cada músculo facial, incluidos los de las cejas y las mejillas.

Reconocimiento facial detecta cambios en la expresión

Al integrar estas AUs en su tecnología, Fujitsu ha sido pionera en un nuevo enfoque para descubrir incluso cambios sutiles en la expresión facial. Para detectar AUs con mayor precisión, las técnicas subyacentes de aprendizaje profundo requieren grandes cantidades de datos. Sin embargo, en situaciones del mundo real, las cámaras generalmente capturan caras en varios ángulos, tamaños y posiciones, lo que dificulta la preparación de datos de aprendizaje a gran escala correspondientes a cada estado visual / espacial. Por lo tanto, las imágenes capturadas por la cámara afectan negativamente la precisión de la detección.

Figura 1 muestra de relación entre AUs y expresión facial

Tecnologías desarrolladas

En colaboración con la Facultad de Ciencias Computaciones de la Universidad Carnegie Mellon, Fujitsu Laboratories, Ltd. y Fujitsu Laboratories of America Inc. han desarrollado una tecnología de reconocimiento de expresiones faciales a partir de IA, que puede detectar AUs con alta precisión, incluso con datos de entrenamiento limitados.

1. Proceso de normalización para ajustar la cara para una mejor semejanza de la imagen frontal

Con esta tecnología, las imágenes de la cara tomadas en varios ángulos, tamaños y posiciones se giran. Amplían o reducen y se ajustan de otra manera para que la imagen se parezca más a la frontal del rostro. Esto hace posible detectar AUs con una pequeña cantidad de datos de entrenamiento. Basados ​​en la vista frontal de la cara del sujeto.

Reconocimiento facial detecta cambios en la expresión

2. Análisis de regiones significativas que afectan la detección de AU para cada AU

En el proceso de normalización, se convierten múltiples puntos característicos de la cara en la imagen. Para que se acerquen a las posiciones de los puntos característicos en la imagen frontal. Sin embargo, la cantidad de rotación, ampliación / reducción y ajuste cambia dependiendo de dónde se seleccionan los puntos del rostro. Por ejemplo, si los puntos característicos se seleccionan para estar alrededor de los ojos y realizar el proceso de rotación, la zona de alrededor de los ojos estará cerca de la imagen de referencia. Pero partes como la boca estarán desalineadas.

Para abordar este problema, se analizan las áreas que tienen una influencia significativa en la detección de AU de la imagen. De la cara capturada y el grado de rotación. Ampliación y reducción se ajustan, en consecuencia. Al utilizar diferentes procesos de normalización para cada AU individual, la tecnología desarrollada puede detectar AU con mayor precisión.

Reconocimiento facial detecta cambios en la expresión

Figura 2. Tecnología desarrollada

Resultados

Esta tecnología ha logrado una alta tasa de precisión de detección del 81%, incluso con datos de entrenamiento limitados. Esta tecnología también es más precisa que otras existentes. Según la conclusión de varios benchmarks de la tecnología de reconocimiento de expresión facial (Reconocimiento y Análisis de Expresión Facial 2017).

Planes futuros

Fujitsu tiene como objetivo introducir la tecnología en aplicaciones prácticas. Para diversos casos de uso. Incluido el soporte de teleconferencia, la medición del compromiso de los empleados y la supervisión del conductor.

Reconocimiento facial detecta cambios en la expresión

Fuente: Fujitsu 

¡Únete a nuestro canal de Telegram

Únete a nuestro CANAL DE CHOLLOS Únete a nuestro CANAL DE TELEGRAM

DEJA UNA RESPUESTA

Por favor ingrese su comentario!
Por favor ingrese su nombre aquí

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.